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Hacking

• Roots in phone phreaking

• White  Hat vs Gray Hat vs Black Hat

• Over 50% of Modern Software Development is Black Hat!

Tip the balance: Be a force for good… not evil!
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Disassembly

program.c

gcc -S program.s

programgcc –o program

program objdump -d program.s
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Disclaimer – Buffer Overflow Attack

• DO NOT ABUSE!

• Ancient form of hacking
• First documented in 1972

• Used in 1988 “Morris Worm” – First internet virus

• Used to hack Unix, Windows, Xbox, PS2, Wii

• Taught here as an example of what to watch out for!
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Example Vulnerable Code

char * getUserLine() {

char buffer[80];

static char retBuf[80];

if (gets(buffer)) {

strcpy(retBuf,buffer);

return retBuf;

}

return NULL;

}

• “gets” reads from stdin until it 
finds either an end-of-file or a 
newline (returns 0).

• “gets” copies whatever it reads 
into the argument (buffer).

• “gets” does not check to make 
sure result fits in space 
allocated.
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getUserLine in X86 (with stack frame)

getUserLine:
push   %ebp
mov %esp,%ebp
sub    $0x68,%esp
lea    -0x58(%ebp),%eax
mov %eax,(%esp)
call   401210 <_gets>
test   %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

return @

%ebp main’s %ebp

…

buffer / %ebp-x58

%esp / Parm 1 %ebp-58
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gets functionality

gets reads a file that starts 
with…

“THE FIRST EIGHTY …”

return @

%ebp main’s %ebp

…

…

T x20     E            I

F       I          R          S      

buffer / %ebp-58 T         H       E        x20

%esp / parm1 %ebp-58
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Mixing Hex and ASCII

• We normally treat a file as a string of ASCII characters

• In fact, each ASCII character has a hex representation…

• We can use the command “od –t x1z” to show both ASCII and hex
0000000 54 48 45 20 46 49 52 53 54 20 45 49 47 48 54 59  >THE FIRST EIGHTY<

0000020 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20  >...             <

0000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20  >                <

• We can write a program to put non-ASCII hex data in a file

T H E F I R S T E I G H T Y …
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Example of a file with ASCII and Hex

• ASCII Representation on terminal “cat file”…
THE FIRST EIGHTY... """"""""0@

• Mixed representation “od -t x1z xmphex.txt”
0000000 54 48 45 20 46 49 52 53 54 20 45 49 47 48 54 59  >THE FIRST EIGHTY<

0000020 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20  >...             <

0000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20  >                <

*

0000120 22 22 22 22 22 22 22 22 11 11 11 11 30 12 40 00  >""""""""....0.@.<

0000140 0a                                               >.<
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GEDIT  Mixed File
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“String” in file (stdin) read by gets
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Alignment Padding main’s ebp Return Address!
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stack frame after gets returns

gets reads a file whose first line 
ends with…

0x2222 2222 

0x1111 1111

0x3012 4000 <- little endian

return @: x0040  1230

%ebp main’s %ebp: x1111 1111

… x2222 2222

…

T x20     E            I

F       I          R          S      

%eax / buffer / %ebp-58 T         H       E        x20

%esp %ebp-58
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getUserLine in X86 (with stack)

getUserLine:
push   %ebp
mov %esp,%ebp
sub    $0x68,%esp
lea    -0x58(%ebp),%eax
mov %eax,(%esp)
call   401210 <_gets>
test   %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

return @: x0040  1230

%ebp,%esp main’s %ebp: x1111 1111

… x2222 2222

…

T x20     E            I

F       I          R          S      

%eax / buffer / %ebp-58 T         H       E        x20

%ebp-58
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getUserLine in X86 (with stack)

getUserLine:
push   %ebp
mov %esp,%ebp
sub    $0x68,%esp
lea    -0x58(%ebp),%eax
mov %eax,(%esp)
call   401210 <_gets>
test   %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

%esp return @: x0040  1230

main’s %ebp: x1111 1111

… x2222 2222

…

T x20     E            I

F       I          R          S      

%eax / buffer / %ebp-58 T         H       E        x20

%ebp-58

%ebp

x1111 1111
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getUserLine in X86 (with stack)

getUserLine:
push   %ebp
mov %esp,%ebp
sub    $0x68,%esp
lea    -0x58(%ebp),%eax
mov %eax,(%esp)
call   401210 <_gets>
test   %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

return @: x0040  1230

main’s %ebp: x1111 1111

… x2222 2222

…

T x20     E            I

F       I          R          S      

%eax / buffer / %ebp-58 T         H       E        x20

%ebp-58

%eip

x0040 1230
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What’s at 0x0040 1230?

Your evil code!
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Problems with Buffer Overflow Attack

• Need to mix ASCII with hexadecimal in 
input file

• String can’t contain “newline” (0x10)

• Need to know offset from buffer to top 
of stack / return @

• Overwrites caller’s return address

• %ebp has been overwritten – lost top of 
caller’s stack frame

• Need to know address of pirate routine 
to “return” to

• Can write a program to do that

• Basic restriction

• Get that from objdump –d

• Can get from objdump –d

• %esp points to bottom of  caller’s 
frame, and we can find its size from 
objdump -d

• Harder, but not impossible
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Preventing Buffer Overflow w/ “Guard”

char * getUserLine() {

char buffer[80]; 

int guard=0xFEDCBA98;

static char retBuf[80];

if (gets(buffer)) {

assert(guard==0xFEDCBA98);

strcpy(retBuf,buffer);

return retBuf;

}

return NULL;

}

• guard goes in stack frame 
after (on top of) buffer

• If buffer overflow occurs, 
guard will be modified

• If buffer overflow occurs, 
assert will fail

• Unless hacker did objdump
and put 0xFEDCBA98 in his 
hacked file
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“String” in file (stdin) read by gets
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Alignment Padding main’s ebp Return Address!Guard
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Preventing Buffer Overflow Attacks

char * getUserLine() {

char buffer[80];

static char retBuf[80];

if (fgets(buffer,sizeof(buffer),stdin)) {

strcpy(retBuf,buffer);

return retBuf;

}

return NULL;

}

• “fgets” reads from any file 
(third parameter)

• “fgets” checks size (second 
parameter)

• “fgets” does not allow 
buffer overwrite


