
Binghamton

University

CS-220

Spring 2016

Buffer Overflow Attacks

Computer Systems 3.10.3-4,

Binghamton

University

CS-220

Spring 2016

Hacking

• Roots in phone phreaking

• White Hat vs Gray Hat vs Black Hat

• Over 50% of Modern Software Development is Black Hat!

Tip the balance: Be a force for good… not evil!

Binghamton

University

CS-220

Spring 2016

Disassembly

program.c

gcc -S program.s

programgcc –o program

program objdump -d program.s

Binghamton

University

CS-220

Spring 2016

Disclaimer – Buffer Overflow Attack

• DO NOT ABUSE!

• Ancient form of hacking
• First documented in 1972

• Used in 1988 “Morris Worm” – First internet virus

• Used to hack Unix, Windows, Xbox, PS2, Wii

• Taught here as an example of what to watch out for!

Binghamton

University

CS-220

Spring 2016

Example Vulnerable Code

char * getUserLine() {

char buffer[80];

static char retBuf[80];

if (gets(buffer)) {

strcpy(retBuf,buffer);

return retBuf;

}

return NULL;

}

• “gets” reads from stdin until it
finds either an end-of-file or a
newline (returns 0).

• “gets” copies whatever it reads
into the argument (buffer).

• “gets” does not check to make
sure result fits in space
allocated.

Binghamton

University

CS-220

Spring 2016

getUserLine in X86 (with stack frame)

getUserLine:
push %ebp
mov %esp,%ebp
sub $0x68,%esp
lea -0x58(%ebp),%eax
mov %eax,(%esp)
call 401210 <_gets>
test %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

return @

%ebp main’s %ebp

…

buffer / %ebp-x58

%esp / Parm 1 %ebp-58

Binghamton

University

CS-220

Spring 2016

gets functionality

gets reads a file that starts
with…

“THE FIRST EIGHTY …”

return @

%ebp main’s %ebp

…

…

T x20 E I

F I R S

buffer / %ebp-58 T H E x20

%esp / parm1 %ebp-58

Binghamton

University

CS-220

Spring 2016

Mixing Hex and ASCII

• We normally treat a file as a string of ASCII characters

• In fact, each ASCII character has a hex representation…

• We can use the command “od –t x1z” to show both ASCII and hex
0000000 54 48 45 20 46 49 52 53 54 20 45 49 47 48 54 59 >THE FIRST EIGHTY<

0000020 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 >... <

0000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 > <

• We can write a program to put non-ASCII hex data in a file

T H E F I R S T E I G H T Y …

5
4

4
8

4
5

2
0

4
6

4
9

5
2

5
3

5
4

2
0

4
5

4
9

4
7

4
8

5
4

5
9

…

Binghamton

University

CS-220

Spring 2016

Example of a file with ASCII and Hex

• ASCII Representation on terminal “cat file”…
THE FIRST EIGHTY... """"""""0@

• Mixed representation “od -t x1z xmphex.txt”
0000000 54 48 45 20 46 49 52 53 54 20 45 49 47 48 54 59 >THE FIRST EIGHTY<

0000020 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 >... <

0000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 > <

*

0000120 22 22 22 22 22 22 22 22 11 11 11 11 30 12 40 00 >""""""""....0.@.<

0000140 0a >.<

Binghamton

University

CS-220

Spring 2016

GEDIT Mixed File

Binghamton

University

CS-220

Spring 2016

“String” in file (stdin) read by gets

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

T H E 2
0

F I R S T 2
0

E I G H T Y . . . 2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

3
0

1
2

4
0

0
0

Alignment Padding main’s ebp Return Address!

Binghamton

University

CS-220

Spring 2016

stack frame after gets returns

gets reads a file whose first line
ends with…

0x2222 2222

0x1111 1111

0x3012 4000 <- little endian

return @: x0040 1230

%ebp main’s %ebp: x1111 1111

… x2222 2222

…

T x20 E I

F I R S

%eax / buffer / %ebp-58 T H E x20

%esp %ebp-58

Binghamton

University

CS-220

Spring 2016

getUserLine in X86 (with stack)

getUserLine:
push %ebp
mov %esp,%ebp
sub $0x68,%esp
lea -0x58(%ebp),%eax
mov %eax,(%esp)
call 401210 <_gets>
test %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

return @: x0040 1230

%ebp,%esp main’s %ebp: x1111 1111

… x2222 2222

…

T x20 E I

F I R S

%eax / buffer / %ebp-58 T H E x20

%ebp-58

Binghamton

University

CS-220

Spring 2016

getUserLine in X86 (with stack)

getUserLine:
push %ebp
mov %esp,%ebp
sub $0x68,%esp
lea -0x58(%ebp),%eax
mov %eax,(%esp)
call 401210 <_gets>
test %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

%esp return @: x0040 1230

main’s %ebp: x1111 1111

… x2222 2222

…

T x20 E I

F I R S

%eax / buffer / %ebp-58 T H E x20

%ebp-58

%ebp

x1111 1111

Binghamton

University

CS-220

Spring 2016

getUserLine in X86 (with stack)

getUserLine:
push %ebp
mov %esp,%ebp
sub $0x68,%esp
lea -0x58(%ebp),%eax
mov %eax,(%esp)
call 401210 <_gets>
test %eax,%eax
…
move %ebp,%esp
pop %ebp
ret

return @: x0040 1230

main’s %ebp: x1111 1111

… x2222 2222

…

T x20 E I

F I R S

%eax / buffer / %ebp-58 T H E x20

%ebp-58

%eip

x0040 1230

Binghamton

University

CS-220

Spring 2016

What’s at 0x0040 1230?

Your evil code!

Binghamton

University

CS-220

Spring 2016

Problems with Buffer Overflow Attack

• Need to mix ASCII with hexadecimal in
input file

• String can’t contain “newline” (0x10)

• Need to know offset from buffer to top
of stack / return @

• Overwrites caller’s return address

• %ebp has been overwritten – lost top of
caller’s stack frame

• Need to know address of pirate routine
to “return” to

• Can write a program to do that

• Basic restriction

• Get that from objdump –d

• Can get from objdump –d

• %esp points to bottom of caller’s
frame, and we can find its size from
objdump -d

• Harder, but not impossible

Binghamton

University

CS-220

Spring 2016

Preventing Buffer Overflow w/ “Guard”

char * getUserLine() {

char buffer[80];

int guard=0xFEDCBA98;

static char retBuf[80];

if (gets(buffer)) {

assert(guard==0xFEDCBA98);

strcpy(retBuf,buffer);

return retBuf;

}

return NULL;

}

• guard goes in stack frame
after (on top of) buffer

• If buffer overflow occurs,
guard will be modified

• If buffer overflow occurs,
assert will fail

• Unless hacker did objdump
and put 0xFEDCBA98 in his
hacked file

Binghamton

University

CS-220

Spring 2016

“String” in file (stdin) read by gets

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

T H E 2
0

F I R S T 2
0

E I G H T Y . . . 2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

9
8

B
A

D
C

F
E

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

3
0

1
2

4
0

0
0

Alignment Padding main’s ebp Return Address!Guard

Binghamton

University

CS-220

Spring 2016

Preventing Buffer Overflow Attacks

char * getUserLine() {

char buffer[80];

static char retBuf[80];

if (fgets(buffer,sizeof(buffer),stdin)) {

strcpy(retBuf,buffer);

return retBuf;

}

return NULL;

}

• “fgets” reads from any file
(third parameter)

• “fgets” checks size (second
parameter)

• “fgets” does not allow
buffer overwrite

